json-tricks Documentation
Release 1.2

Mark

Jul 12, 2018

Contents

Installation and use

Preserve type vs use primitive

Features
3.1 Numpy arrays
3.2 Class instances

3.3 Date, time, datetime and timedelta e e e e
3.4 0 Ordero e e e e e e
3.5 CommeEntS v vt i e e e e e e e e e e e e e e e e

3.6 Other features

Usage & contributions

Tests

Main components

6.1 dumps
6.2 dump
6.3 loads
64 load
Utilities

7.1 strip comments
7.2 numpy

7.3 class instances
7.4 enum instances
7.5 date/time . . .
7.6 numpy scalars

Running tests

Table of content

15

17

19
19
20
21
23

25
25
25
26
26
26
26

29

31

json-tricks Documentation, Release 1.2

The pyjson-tricks package brings several pieces of functionality to python handling of json files:
1. Store and load numpy arrays in human-readable format.

Store and load class instances both generic and customized.

Store and load date/times as a dictionary (including timezone).

Preserve map order { } using OrderedDict.

A I

Allow for comments in json files by starting lines with #.
6. Sets, complex numbers, Decimal, Fraction, enums, compression, duplicate keys, ...
As well as compression and disallowing duplicate keys.
* Code: https://github.com/mverleg/pyjson_tricks
* Documentation: http://json-tricks.readthedocs.org/en/latest/
 PIP: https://pypi.python.org/pypi/json_tricks

The 2.0 series added some of the above features and broke backward compatibility. The version 3.0 series is a more
readable rewrite that also makes it easier to combine encoders, again not fully backward compatible.

Several keys of the format ___keyname___ have special meanings, and more might be added in future releases.

If you’re considering JSON-but-with-comments as a config file format, have a look at HISON, it might be more
appropriate. For other purposes, keep reading!

Thanks for all the Github stars!

Contents 1

https://github.com/mverleg/pyjson_tricks
http://json-tricks.readthedocs.org/en/latest/
https://pypi.python.org/pypi/json_tricks
https://github.com/hjson/hjson-py

json-tricks Documentation, Release 1.2

2 Contents

CHAPTER 1

Installation and use

You can install using

pip install json-tricks # or e.g. 'json-tricks<3.0' for older versions

Decoding of some data types needs the corresponding package to be installed, e.g. numpy for arrays, pandas for
dataframes and pyt z for timezone-aware datetimes.

You can import the usual json functions dump(s) and load(s), as well as a separate comment removal function, as
follows:

from json_tricks import dump, dumps, load, loads, strip_comments

The exact signatures of these and other functions are in the documentation.

json-tricks supports Python 2.7, and Python 3.4 and later, and is automatically tested on 2.7, 3.4, 3.5 and 3.6.
Pypy is supported without numpy and pandas. Pandas doesn’t support 3.4.

http://json-tricks.readthedocs.org/en/latest/#main-components

json-tricks Documentation, Release 1.2

4 Chapter 1. Installation and use

CHAPTER 2

Preserve type vs use primitive

By default, types are encoded such that they can be restored to their original type when loaded with json-tricks.
Example encodings in this documentation refer to that format.

You can also choose to store things as their closest primitive type (e.g. arrays and sets as lists, decimals as floats). This
may be desirable if you don’t care about the exact type, or you are loading the json in another language (which doesn’t
restore python types). It’s also smaller.

To forego meta data and store primitives instead, pass primitives to dump (s). This is available in version 3. 8
and later. Example:

data = [

arange (0, 10, 1, dtype=int) .reshape((2, 5)),

datetime (year=2017, month=1, day=19, hour=23, minute=00, second=00),

1+ 27,

Decimal (42),

Fraction(l, 3),

MyTestCls (s='ub', dct={'7"': 7}), # see later

set (range (7)),
1
Encode with metadata to preserve types when decoding
print (dumps (data))

// (comments added and indenting changed)
[
// numpy array
{
"__ndarray_ ": [
(o, 1, 2, 3, 41,
[5, 6, 7, 8, 911,

"dtype": "intoe4",
"shape": [2, 51,
"Corder": true

b
// datetime (naive)

(continues on next page)

json-tricks Documentation, Release 1.2

(continued from previous page)

"_datetime_ ":
"year": 2017,
"month": 1,
"day": 19,
"hour": 23

null,

br
// complex number
{
"__complex__ ": [1.0, 2.0]
s
// decimal & fraction
{
"_ decimal__": "42"
by
{
" fraction_ ": true
"numerator": 1,
"denominator": 3,
// class instance
" __instance_type_ ": [
"tests.test_class",
"MyTestCls"
1,
"attributes": {
"S": "ub",
"dct": {"7": 7}

Encode as primitive types; more simple but loses type information
print (dumps (data, primitives=True))

// (comments added and indentation changed)
[
// numpy array
(fo, 1, 2, 3, 41,
[5, 6, 7, 8, 911,
// datetime (naive)
"2017-01-19T23:00:00",
// complex number
[1.0, 2.0],
// decimal & fraction
42.0,
0.3333333333333333,
// class instance
{
"s": "ub",
"det": {"T7": T}

(continues on next page)

Chapter 2. Preserve type vs use primitive

json-tricks Documentation, Release 1.2

(continued from previous page)

b
// set
(o, 1, 2, 3, 4, 5, 6]

Note that valid json is produced either way: json-tricks stores meta data as normal json, but other packages
probably won’t interpret it.

json-tricks Documentation, Release 1.2

8 Chapter 2. Preserve type vs use primitive

CHAPTER 3

Features

3.1 Numpy arrays

The array is encoded in sort-of-readable and very flexible and portable format, like so:

arr = arange(0, 10, 1, dtype=uint8) .reshape((2, 5))
print (dumps ({ 'mydata': arr}))

this yields:
{
"mydata": {
"dtype": "uint8",
"shape": [2, 51,
"Corder": true,
" _ndarray__": [[O, 1, 2, 3, 41, I[5, 6, 7, 8, 911

which will be converted back to a numpy array when using json_tricks.loads. Note that the memory order
(Corder) is only stored in v3.1 and later and for arrays with at least 2 dimensions.

As you’ve seen, this uses the magic key __ndarray__. Don’tuse __ndarray___as adictionary key unless you’re
trying to make a numpy array (and know what you’re doing).

Numpy scalars are also serialized (v3.5+). They are represented by the closest python primitive type. A special
representation was not feasible, because Python’s json implementation serializes some numpy types as primitives,
without consulting custom encoders. If you want to preverse the exact numpy type, use encode_scalars_inplace.

Performance: this method has slow write times similar to other human-readable formats, although read time is worse
than csv. File size (with compression) is high on a relative scale, but it’s only around 30% above binary. See this
benchmark (it’s called JSONGzip). A binary alternative might be added, but is not yet available.

This implementation is inspired by an answer by tlausch on stackoverflow that you could read for details.

https://json-tricks.readthedocs.io/en/latest/#json_tricks.np_utils.encode_scalars_inplace
https://github.com/mverleg/array_storage_benchmark
https://github.com/mverleg/pyjson_tricks/issues/9
http://stackoverflow.com/questions/3488934/simplejson-and-numpy-array

json-tricks Documentation, Release 1.2

3.2 Class instances

json_tricks can serialize class instances.

If the class behaves normally (not generated dynamic, no __new___ or __metaclass___ magic, etc) and all it’s
attributes are serializable, then this should work by default.

json_tricks/test_class.py
class MyTestCls:
def _ _init__ (self, *xkwargs):
for k, v in kwargs.items():
setattr(self, k, v)

cls_instance = MyTestCls(s='ub', dct={"'7"': 7})

json = dumps (cls_instance, indent=4)
cls_instance_again = loads (json)

You’ll get your instance back. Here the json looks like this:

{

" __instance_type_ ": [
"json_tricks.test_class",
"MyTestCls"

1,
"attributes": {
"S": "ubH’
"dCt"I {
"7": 7

As you can see, this stores the module and class name. The class must be importable from the same module when
decoding (and should not have changed). If it isn’t, you have to manually provide a dictionary to c1s_lookup_map
when loading in which the class name can be looked up. Note that if the class is imported, then globals () is such
a dictionary (so try loads (json, cls_lookup_map=glboals ())). Also note that if the class is defined in
the ‘top’ script (that you’re calling directly), then this isn’t a module and the import part cannot be extracted. Only the
class name will be stored; it can then only be deserialized in the same script, or if you provide c1s_lookup_map.

Note that this also works with slots without having to do anything (thanks to kof fie), which encodes like this
(custom indentation):

{

"__instance_type__": ["module.path", "ClassName"],
"slots": {"slotattr": 37},

"attributes": {"dictattr": 42}

If the instance doesn’t serialize automatically, or if you want custom behaviour, then you can implement
__Jjson__encode__ (self) and__ json_decode_ (self, *xattributes) methods, like so:

class CustomEncodeCls:
def _ init__ (self):
self.relevant = 42
self.irrelevant = 37

(continues on next page)

10 Chapter 3. Features

json-tricks Documentation, Release 1.2

(continued from previous page)

def __ json_encode__ (self):
should return primitive, serializable types like dict, 1list, int,_
—string, float...

return {'relevant': self.relevant}
def __ json_decode__ (self, =x=xattrs):
should initialize all properties; note that __init__ 1is not called
—implicitly
self.relevant = attrs|['relevant']
self.irrelevant = 12

As you’ve seen, this uses the magic key __instance_type__ . Don’tuse __instance_type__ asadictionary
key unless you know what you’re doing.

3.3 Date, time, datetime and timedelta

CLINT3

Date, time, datetime and timedelta objects are stored as dictionaries of “day”, “hour”, “millisecond” etc keys, for each
nonzero property.

Timezone name is also stored in case it is set. You’ll need to have pyt z installed to use timezone-aware date/times,
it’s not needed for naive date/times.

{
" datetime_ ": null,
"year": 1988,
"month": 3,
"day": 15,
"hour": 8,
"minute": 3,
"second": 59,
"microsecond": 7,
"tzinfo": "Europe/Amsterdam"

This approach was chosen over timestamps for readability and consistency between date and time, and over a sin-
gle string to prevent parsing problems and reduce dependencies. Note that if primitives=True, date/times are
encoded as ISO 8601, but they won’t be restored automatically.

Don’tuse __date_ ,_ time_ ,_ datetime_ ,__timedelta_ or__tzinfo__ as dictionary keys un-
less you know what you’re doing, as they have special meaning.

3.4 Order

Given an ordered dictionary like this (see the tests for a longer one):

OrderedDict ((

'elephant', None),
'chicken', None),
'tortoise', None),

ordered =
(
(
(

))

Converting to json and back will preserve the order:

3.3. Date, time, datetime and timedelta 11

json-tricks Documentation, Release 1.2

from json_tricks import dumps, loads
json = dumps (ordered)
ordered = loads (json, preserve_order=True)

where preserve_order=True is added for emphasis; it can be left out since it’s the default.

As a note on performance, both dicts and OrderedDicts have the same scaling for getting and setting items (O (1)).
In Python versions before 3.5, OrderedDicts were implemented in Python rather than C, so were somewhat slower;
since Python 3.5 both are implemented in C. In summary, you should have no scaling problems and probably no
performance problems at all, especially for 3.5 and later. Python 3.6+ preserve order of dictionaries by default making
this redundant, but this is an implementation detail that should not be relied on.

3.5 Comments

This package uses # and // for comments, which seem to be the most common conventions, though only the latter is
valid javascript.

For example, you could call 1oads on the following string:

{ # "comment 1

"hello": "Wor#d", "Bye": "\"M#rk\"", "yes\\\"": 5,# comment" 2
"quote": "\"th#t's\" what she said", // comment "3"
"list"™: [1, 1, "#", "\"", "\\", 8], "dict": {"g": 7} #" comment 4 with quotes

}

// comment 5

And it would return the de-commented version:

{

"helloﬂ: "WOI#d", "Bye": "\"M#rk\"", "yes\\\"": 5’
"quote": "\"th#t's\" what she said",
"list": [l, l, "#", "\"“, "\\", 8], "dict": {"q": 7}

Since comments aren’t stored in the Python representation of the data, loading and then saving a json file will remove
the comments (it also likely changes the indentation).

The implementation of comments is not particularly efficient, but it does handle all the special cases I could think of.
For a few files you shouldn’t notice any performance problems, but if you're reading hundreds of files, then they are
presumably computer-generated, and you could consider turning comments off (1gnore_comment s=False).

3.6 Other features

* Sets are serializable and can be loaded. By default the set json representation is sorted, to have a consistent
representation.

» Save and load complex numbers (version 3.2) with 142 7 serializing as { ' __complex__': [1, 21}.
* Save and load Decimal and Fraction (including NaN, infinity, -0 for Decimal).

* Save and load Enum (thanks to Jenselme), either built-in in python3.4+, or with the enum34 package in
earlier versions. ITntEnum needs encode_intenums_inplace.

* json_tricks allows for gzip compression using the compression=True argument (off by default).

12 Chapter 3. Features

http://stackoverflow.com/a/8177061/723090
https://pypi.org/project/enum34/
https://json-tricks.readthedocs.io/en/latest/#json_tricks.utils.encode_intenums_inplace

json-tricks Documentation, Release 1.2

* json_tricks can check for duplicate keys in maps by setting allow_duplicates to False. These
are kind of allowed, but are handled inconsistently between json implementations. In Python, for dict and
OrderedDict, duplicate keys are silently overwritten.

3.6. Other features 13

http://stackoverflow.com/questions/21832701/does-json-syntax-allow-duplicate-keys-in-an-object

json-tricks Documentation, Release 1.2

14 Chapter 3. Features

CHAPTER 4

Usage & contributions

Code is under Revised BSD License so you can use it for most purposes including commercially.

Contributions are very welcome! Bug reports, feature suggestions and code contributions help this project become
more useful for everyone! There is a short contribution guide.

15

https://github.com/mverleg/pyjson_tricks/blob/master/LICENSE.txt
https://github.com/mverleg/pyjson_tricks/blob/master/CONTRIBUTING.txt

json-tricks Documentation, Release 1.2

16 Chapter 4. Usage & contributions

CHAPTER B

Tests

Tests are run automatically for commits to the repository for all supported versions. This is the status: To run the tests
manually for your version, see this guide.

17

https://travis-ci.org/mverleg/pyjson_tricks
https://github.com/mverleg/pyjson_tricks/blob/master/tests/run_locally.rst

json-tricks Documentation, Release 1.2

18 Chapter 5. Tests

CHAPTER O

Main components

Note that these functions exist as two versions, the full version with numpy (np) and the version without requirements
(nonp) that doesn’t do nunpy encoding/decoding.

If you import these functions directly from json_tricks, e.g. from json_tricks import dumps, then it will
select np if numpy is available, and nonp otherwise. You can use json_tricks.NUMPY_MODE to see if numpy
mode is being used.

This dual behaviour can lead to confusion, so it is recommended that you import directly from np or nonp.

6.1 dumps

json_tricks.nonp.dumps (obj, sort_keys=None, cls=<class ’json_tricks.encoders.TricksEncoder’>,
obj_encoders=[<function pandas_encode>, <function numpy_encode>,
<function enum_instance_encode>, <function json_date_time_encode>,
<function json_complex_encode>, <function json_set_encode>, <func-

tion numeric_types_encode>, <function class_instance_encode>],
extra_obj_encoders=(), primitives=False, compression=None,
allow_nan=False, conv_str_byte=False, fallback_encoders=(),
**isonkwargs)

Convert a nested data structure to a json string.
Parameters
* obj — The Python object to convert.
* sort_keys — Keep this False if you want order to be preserved.

* cls — The json encoder class to use, defaults to NoNumpyEncoder which gives a warning
for numpy arrays.

* obj_encoders - Iterable of encoders to use to convert arbitrary objects into json-able
promitives.

* extra_obj_encoders — Like obj_encoders but on top of them: use this to add encoders
without replacing defaults. Since v3.5 these happen before default encoders.

19

json-tricks Documentation, Release 1.2

* fallback_encoders — These are extra obj_encoders that 1) are ran after all others and
2) only run if the object hasn’t yet been changed.

* allow_nan — Allow NaN and Infinity values, which is a (useful) violation of the JSON
standard (default False).

* conv_str_byte — Try to automatically convert between strings and bytes (assuming utf-
8) (default False).

Returns The string containing the json-encoded version of obj.
Other arguments are passed on to cls. Note that sort_keys should be false if you want to preserve order.

json_tricks.np.dumps (0bj, sort_keys=None, cls=<class ’json_tricks.encoders.TricksEncoder’>,
obj_encoders=[<function pandas_encode>, <function numpy_encode>,
<function enum_instance_encode>, <function json_date_time_encode>,
<function json_complex_encode>, <function json_set_encode>, <func-
tion numeric_types_encode>, <function class_instance_encode>], ex-
tra_obj_encoders=(), primitives=False, compression=None, allow_nan=False,

conv_str_byte=False, fallback_encoders=(), **jsonkwargs)
Convert a nested data structure to a json string.

Parameters
* obj — The Python object to convert.
* sort_keys — Keep this False if you want order to be preserved.

* cls — The json encoder class to use, defaults to NoNumpyEncoder which gives a warning
for numpy arrays.

* obj_encoders - Iterable of encoders to use to convert arbitrary objects into json-able
promitives.

* extra_obj_encoders — Like 0obj_encoders but on top of them: use this to add encoders
without replacing defaults. Since v3.5 these happen before default encoders.

e fallback_encoders — These are extra obj_encoders that 1) are ran after all others and
2) only run if the object hasn’t yet been changed.

* allow_nan — Allow NaN and Infinity values, which is a (useful) violation of the JSON
standard (default False).

* conv_str_byte — Try to automatically convert between strings and bytes (assuming utf-
8) (default False).

Returns The string containing the json-encoded version of obj.

Other arguments are passed on to cls. Note that sort_keys should be false if you want to preserve order.

6.2 dump

json_tricks.nonp.dump (0bj, fp, sort_keys=None, cls=<class ’json_tricks.encoders.TricksEncoder’>,
obj_encoders=[<function pandas_encode>, <function numpy_encode>,
<function enum_instance_encode>, <function json_date_time_encode>,
<function json_complex_encode>, <function json_set_encode>, <func-

tion numeric_types_encode>, <function class_instance_encode>],
extra_obj_encoders=(), primitives=False, compression=None,
force_flush=False, allow_nan=Fualse, conv_str_byte=False, fall-

back_encoders=(), **jsonkwargs)
Convert a nested data structure to a json string.

20 Chapter 6. Main components

json-tricks Documentation, Release 1.2

Parameters

» fp — File handle or path to write to.

* compression — The gzip compression level, or None for no compression.

* force_flush — If True, flush the file handle used, when possibly also in the operating

system (default False).

The other arguments are identical to dumps.

json_tricks.np.dump (obj, fp, sort_keys=None, cls=<class ’json_tricks.encoders.TricksEncoder’>,

obj_encoders=[<function pandas_encode>, <function numpy_encode>,
<function enum_instance_encode>, <function json_date_time_encode>,
<function json_complex_encode>, <function json_set_encode>, <func-
tion numeric_types_encode>, <function class_instance_encode>], ex-
tra_obj_encoders=(), primitives=False, compression=None, force_flush=False,
allow_nan=False, conv_str_byte=False, fallback_encoders=(), **jsonkwargs)

Convert a nested data structure to a json string.

Parameters

» fp - File handle or path to write to.

* compression — The gzip compression level, or None for no compression.

* force_flush — If True, flush the file handle used, when possibly also in the operating

system (default False).

The other arguments are identical to dumps.

6.3 loads

json_tricks.nonp.loads (string, preserve_order=True, ignore_comments=True, decompres-

sion=None, obj_pairs_hooks=[<function pandas_hook>, <function
Jjson_numpy_obj_hook>, <json_tricks.decoders.EnumlnstanceHook ob-
ject>, <function json_date_time_hook>, <function json_complex_hook>,
<function Jjson_set_hook>, <function numeric_types_hook>,
<json_tricks.decoders.ClassInstanceHook object>], ex-
tra_obj_pairs_hooks=(), cls_lookup_map=None, allow_duplicates=True,
conv_str_byte=False, **jsonkwargs)

Convert a nested data structure to a json string.

Parameters

string - The string containing a json encoded data structure.

decode_cls_instances — True to attempt to decode class instances (requires the en-
vironment to be similar the the encoding one).

preserve_order — Whether to preserve order by using OrderedDicts or not.
ignore_comments — Remove comments (starting with # or //).

decompression — True to use gzip decompression, False to use raw data, None to auto-
matically determine (default). Assumes utf-8 encoding!

obj_pairs_hooks — A list of dictionary hooks to apply.

extra_obj_pairs_hooks — Like 0bj_pairs_hooks but on top of them: use this to add
hooks without replacing defaults. Since v3.5 these happen before default hooks.

6.3. loads

21

json-tricks Documentation, Release 1.2

* cls_lookup_map — If set to a dict, for example globals (), then classes encoded from
__main___ are looked up this dict.

* allow_duplicates - If set to False, an error will be raised when loading a json-map
that contains duplicate keys.

* parse_float — A function to parse strings to integers (e.g. Decimal). There is also
parse_int.

* conv_str_byte — Try to automatically convert between strings and bytes (assuming utf-
8) (default False).

Returns The string containing the json-encoded version of obj.
Other arguments are passed on to json_func.

json_tricks.np.loads (string, preserve_order=True, ignore_comments=True, decompres-
sion=None, obj_pairs_hooks=[<function = pandas_hook>, <function
Jjson_numpy_obj_hook>, <json_tricks.decoders. EnumInstanceHook ob-
ject>, <function json_date_time_hook>, <function json_complex_hook>,
<function json_set_hook>, <function numeric_types_hook>,
<json_tricks.decoders.ClassInstanceHook object>], extra_obj_pairs_hooks=(),
cls_lookup_map=None, allow_duplicates=True, conv_str_byte=False,

**jisonkwargs)
Convert a nested data structure to a json string.

Parameters
* string - The string containing a json encoded data structure.

* decode_cls_instances — True to attempt to decode class instances (requires the en-
vironment to be similar the the encoding one).

* preserve_order — Whether to preserve order by using OrderedDicts or not.
* ignore_comments — Remove comments (starting with # or //).

* decompression — True to use gzip decompression, False to use raw data, None to auto-
matically determine (default). Assumes utf-8 encoding!

* obj_pairs_hooks — A list of dictionary hooks to apply.

* extra_obj_pairs_hooks — Like obj_pairs_hooks but on top of them: use this to add
hooks without replacing defaults. Since v3.5 these happen before default hooks.

* cls_lookup_map — If set to a dict, for example globals (), then classes encoded from
__main___ are looked up this dict.

* allow_duplicates - If set to False, an error will be raised when loading a json-map
that contains duplicate keys.

* parse_float — A function to parse strings to integers (e.g. Decimal). There is also
parse_int.

* conv_str_byte - Try to automatically convert between strings and bytes (assuming utf-
8) (default False).

Returns The string containing the json-encoded version of obj.

Other arguments are passed on to json_func.

22 Chapter 6. Main components

json-tricks Documentation, Release 1.2

6.4 load

json_tricks.nonp.load (fp, preserve_order=True, ignore_comments=True,

sion=None, obj_pairs_hooks=[<function pandas_hook>, <function
Jjson_numpy_obj_hook>, <json_tricks.decoders. EnumInstanceHook ob-
ject>, <function json_date_time_hook>, <function json_complex_hook>,

<function Jjson_set_hook>, <function numeric_types_hook>,
<json_tricks.decoders.ClassInstanceHook object>], ex-

tra_obj_pairs_hooks=(), allow_duplicates=True,

decompres-

cls_lookup_map=None,

conv_str_byte=False, **jsonkwargs)
Convert a nested data structure to a json string.

Parameters f£p — File handle or path to load from.
The other arguments are identical to loads.
json_tricks.np.load (fp, preserve_order=True, ignore_comments=True,
sion=None, obj_pairs_hooks=[<function = pandas_hook>, <function
Jjson_numpy_obj_hook>, <json_tricks.decoders. EnumInstanceHook ob-
ject>, <function json_date_time_hook>, <function json_complex_hook>,
<function Jjson_set_hook>, <function numeric_types_hook>,

<json_tricks.decoders.ClassInstanceHook object>], extra_obj_pairs_hooks=(),

cls_lookup_map=None, allow_duplicates=True,
**isonkwargs)
Convert a nested data structure to a json string.

decompres-

conv_str_byte=False,

Parameters f£p — File handle or path to load from.

The other arguments are identical to loads.

6.4. load 23

json-tricks Documentation, Release 1.2

24 Chapter 6. Main components

CHAPTER /

Utilities

7.1 strip comments

json_tricks.comment .strip_comments (string, comment_symbols=frozenset(['//’, '#]))
Parameters
* string — A string containing json with comments started by comment_symbols.
* comment_symbols — Iterable of symbols that start a line comment (default # or //).

Returns The string with the comments removed.

7.2 numpy

json_tricks.np.numpy_encode (obj, primitives=False)
Encodes numpy ‘ndarray ‘s as lists with meta data.

Encodes numpy scalar types as Python equivalents. Special encoding is not possible, because int64 (in py2) and
float64 (in py2 and py3) are subclasses of primitives, which never reach the encoder.

Parameters primitives — If True, arrays are serialized as (nested) lists without meta info.

json_tricks.np.json_numpy_ obj_hook (dct)
Replace any numpy arrays previously encoded by NumpyEncoder to their proper shape, data type and data.

Parameters dct — (dict) json encoded ndarray

Returns (ndarray) if input was an encoded ndarray

25

json-tricks Documentation, Release 1.2

7.3 class instances

json_tricks.encoders.class_instance_encode (0bj, primitives=False)
Encodes a class instance to json. Note that it can only be recovered if the environment allows the class to be
imported in the same way.

class json_tricks.decoders.ClassInstanceHook (cls_lookup_map=None)
This hook tries to convert json encoded by class_instance_encoder back to it’s original instance. It only works
if the environment is the same, e.g. the class is similarly importable and hasn’t changed.

7.4 enum instances

Support for enums was added in Python 3.4. Support for previous versions of Python is available with the enum 34
package.

json_tricks.encoders.enum_instance_encode (0bj, primitives=False,

))) with_enum_yalue="False)
Encodes an enum instance to json. Note that it can only be recovered if the environment allows the enum to be

imported in the same way. :param primitives: If true, encode the enum values as primitive (more readable, but
cannot be restored automatically). :param with_enum_value: If true, the value of the enum is also exported (it
is not used during import, as it should be constant).

class json_tricks.decoders.EnumInstanceHook (cls_lookup_map=None)
This hook tries to convert json encoded by enum_instance_encode back to it’s original instance. It only works
if the environment is the same, e.g. the enum is similarly importable and hasn’t changed.

By default Int Enum cannot be encoded as enums since they cannot be differenciated from integers. To serialize them,
you must use encode_intenums_inplace which mutates a nested data structure (in place!) to replace any IntEnum by
their representation. If you serialize this result, it can subsequently be loaded without further adaptations.

json_tricks.utils.encode_intenums_inplace (0bj)
Searches a data structure of lists, tuples and dicts for IntEnum and replaces them by their dictionary representa-
tion, which can be loaded by json-tricks. This happens in-place (the object is changed, use a copy).

7.5 date/time

json_tricks.encoders. json_date_time_encode (0bj, primitives=False)
Encode a date, time, datetime or timedelta to a string of a json dictionary, including optional timezone.

Parameters obj — date/time/datetime/timedelta obj
Returns (dict) json primitives representation of date, time, datetime or timedelta

json_tricks.decoders. json_date_time_hook (dct)
Return an encoded date, time, datetime or timedelta to it’s python representation, including optional timezone.

Parameters dct — (dict) json encoded date, time, datetime or timedelta

Returns (date/time/datetime/timedelta obj) python representation of the above

7.6 numpy scalars

It’s not possible (without a lot of hacks) to encode numpy scalars. This is the case because some numpy scalars
(float64, and depending on Python version also int64) are subclasses of float and int. This means that the Python json

26 Chapter 7. Utilities

https://pypi.org/project/enum34/

json-tricks Documentation, Release 1.2

encoder will stringify them without them ever reaching the custom encoders.

So if you really want to encode numpy scalars, you’ll have to do the conversion beforehand. For that purpose you can
use encode_scalars_inplace, which mutates a nested data structure (in place!) to replace any numpy scalars by their
representation. If you serialize this result, it can subsequently be loaded without further adaptations.

It’s not great, but unless the Python json module changes, it’s the best that can be done. See issue 18 for more details.

json_tricks.np_utils.encode_scalars_inplace (0bj)
Searches a data structure of lists, tuples and dicts for numpy scalars and replaces them by their dictionary
representation, which can be loaded by json-tricks. This happens in-place (the object is changed, use a copy).

7.6. numpy scalars 27

https://github.com/mverleg/pyjson_tricks/issues/18

json-tricks Documentation, Release 1.2

28 Chapter 7. Utilities

CHAPTER 8

Running tests

There are many test environments: with and without pandas, numpy or timezone support, and for each of the supported
Python versions. You will need all the Python versions installed, as well as a number of packages available through
pip. You can justinstall detox (pip install detox), and others will be installed automatically as dependencies
or during tests (like numpy, pandas, pytz, pytest, pytest-cov and tox).

To run all of these tests at once, simply run detox from the main directory. It usually takes roughly half a minute,
but the first time takes longer because packages need to be installed.

To get coverage information from all these configurations, you first need to combine them using coverage
combine .tox/coverage/* (once after each detox). You can then show results normally, e.g. coverage
report. It should be about 90%.

If you want to show results in IntelliJ] PyCharm with lines highlighted etc, you need several steps. First generate
an XML-report with coverage xml. Then the paths must be made to start at the root of the project, or be abso-
lute, which can be done using sed 's/filename="\ ([""]x\)"/filename="pyjson_tricks\/\1"/
g' coverage.xml or manually using find and replace. Finally, you can load the report using Tools > Show
code coverage data and use the green +.

29

json-tricks Documentation, Release 1.2

30 Chapter 8. Running tests

CHAPTER 9

Table of content

This is a simple module so the documentation is single-page.

31

json-tricks Documentation, Release 1.2

32 Chapter 9. Table of content

Index

C

class_instance_encode() (in module
json_tricks.encoders), 26
ClassInstanceHook (class in json_tricks.decoders), 26

D

dump() (in module json_tricks.nonp), 20
dump() (in module json_tricks.np), 21
dumps() (in module json_tricks.nonp), 19
dumps() (in module json_tricks.np), 20

E

encode_intenums_inplace() (in module json_tricks.utils),

26
encode_scalars_inplace() (in module
json_tricks.np_utils), 27
enum_instance_encode() (in module

json_tricks.encoders), 26
EnumlnstanceHook (class in json_tricks.decoders), 26

J

json_date_time_encode() (in module
json_tricks.encoders), 26

json_date_time_hook() (in module json_tricks.decoders),
26

json_numpy_obj_hook() (in module json_tricks.np), 25

L

load() (in module json_tricks.nonp), 23
load() (in module json_tricks.np), 23
loads() (in module json_tricks.nonp), 21
loads() (in module json_tricks.np), 22

N

numpy_encode() (in module json_tricks.np), 25

S

strip_comments() (in module json_tricks.comment), 25

33

	Installation and use
	Preserve type vs use primitive
	Features
	Numpy arrays
	Class instances
	Date, time, datetime and timedelta
	Order
	Comments
	Other features

	Usage & contributions
	Tests
	Main components
	dumps
	dump
	loads
	load

	Utilities
	strip comments
	numpy
	class instances
	enum instances
	date/time
	numpy scalars

	Running tests
	Table of content

